Now Reading
Потерявший слух советский математик устроился в Google, чтобы помочь другим людям с нарушениями слуха и речи
Inva.kz информационный портал социальных новостей Казахстана. Инва кз > Новости > Потерявший слух советский математик устроился в Google, чтобы помочь другим людям с нарушениями слуха и речи

Потерявший слух советский математик устроился в Google, чтобы помочь другим людям с нарушениями слуха и речи

Дмитрий Каневский разрабатывает продукты, которые помогают людям общаться с близкими, коллегами, мобильными устройствами и целым миром.

 

Тем не менее он учился читать по губам, закончил МГУ, стал кандидатом наук, переехал в США и сейчас работает исследователем в Google.

 

Последние 40 лет он разрабатывает устройства и технологии, которые помогают людям с нарушениями слуха. Например, прибор, помогающий «слышать» с помощью кожи, и приложение, которое переводит в текст речь людей с сильным акцентом, заиканием и другими особенностями речи.

 

Изобретатель рассказал, как создал свой аппарат для чтения с губ, устроился в Google и помог разработать алгоритм для автоматического создания титров на YouTube.

 

Конструктор

В детстве я потерял слух. Но меня научили читать по губам, и я пошёл в обычную школу.

 

У меня было много друзей. Тогда я не испытывал больших сложностей в общении. Трудно стало, когда в восьмом классе я перешёл во вторую математическую школу в Москве. Там были другие ребята и сложные технологические предметы — учиться приходилось в основном по учебникам.

 

Тем не менее после школы я поступил в МГУ — в 1969 году, а потом ещё восемь лет учился математике и стал кандидатом наук, написав диссертацию по алгебраической геометрии.

 

Думаю, математика делала меня более независимым. В ней ты один на один с проблемой. Ты можешь сфокусироваться на ней, бороться с ней. Это соответствует моему характеру.

 

Заканчивая диссертацию, я встретил будущую жену. Она переезжала со своими родителями в Израиль, и я решил отправиться вслед за ней.

 

Я знал, что в новой стране не буду так же хорошо читать по губам, как в СССР, и не смогу свободно общаться с людьми. Тогда я разработал аппарат, который помогал читать с губ.

 

Прибор крепился на теле и позволял «слышать» кожей — улавливал звуки и переводил их в вибрации. Проблема была в том, что некоторые звуки, например «с», «ш», «и», «а», находятся на высоких частотах, поэтому их сложно почувствовать кожей. Тогда я придумал переводить высокие частоты в низкие.

 

Мне удалось сделать настолько маленький аппарат, что его под одеждой не замечали другие люди.

 

Я получил разрешение вывезти устройство в Израиль, и оно помогало мне говорить на иврите, в котором большое количество слов с «высокочастотными» звуками вроде «шабат», «шалом» и так далее.

 

В Израиле я показал аппарат одному доктору. Он сказал, что это великолепная вещь и нужно открыть компанию по продаже устройства.

 

Мы назвали её SensorAid, и параллельно с этим стартапом я ещё работал математиком в институте Вейцмана. В месяц я зарабатывал 2000 шекелей, это было в 1981 году.

 

Аппарат потом применяли во многих странах — он был универсален для всего мира. В одной больнице его сравнили с разработкой компании Cohler, которая вживляла передатчик в ухо человека, чтобы он мог считывать звуки.

 

Мой аппарат показал такой же результат, как у Cohler, но их разработка стоила $25 тысяч и требовала серьёзной операции, а мой вариант был в несколько раз дешевле и не требовал вмешательства хирургов.

 

В 1984 году американская компания Spectro выкупила авторские права на аппарат (сумму сделки Каневский назвать отказался — vc.ru). Сперва я отправился работать в академические институты в Германии и США, а после перешёл в IBM.

 

Работа в IBM

В начале работы я разработал алгоритм для распознавания речи.

 

Чтобы перевести речь в текст, системе требовалось считать акустический сигнал и сопоставить его со словом, которое он представляет.

 

Для этого звук представляется как последовательность чисел, которая сравнивается с каждым словом в словаре, используя некоторый критерий. Произнесённым считается слово, которое лучше всего согласовано с этой последовательностью чисел. Критерии — многочлены, которые состояли из 50 млн переменных, или параметров.

 

В 1990-е годы вычислять многочлены с 50 млн параметров за линейное время (временная сложность алгоритма, которая зависит от числа операций — vc.ru) позволяли методы динамического программирования.

 

Более совершенные критерии были основаны не на многочленах, а на рациональных функциях — отношениях многочленов. Для них долгое время не могли найти способ вычисления значений для 50 млн параметров в линейное время. А я нашёл этот метод. И когда его стали применять, точность распознавания речи значительно улучшилась.

 

 

Дмитрий Каневский на мероприятии AI in Action

Вместе с этим я постоянно работал над технологиями, которые помогали бы людям с нарушениями слуха. В то время появился интернет и с его помощью я создал первые в мире сервисы, которые помогали понимать речь.

 

Например, сервис, который позволял переводить устную речь в письменную. Для этого клиент звонил людям, умеющим быстро печатать, включал громкую связь, и они набирали текст, который слышали во время звонка.

 

Текст в реальном времени высвечивался на экране компьютера клиента, и тот понимал, о чём говорят рядом с ним. Такая услуга стоила до $120–150 в час.

 

Также я занимался изобретательством, не связанным с распознаванием речи.

 

Одна из таких технологий — Artificial Passenger (искусственный пассажир — vc.ru). Она помогала водителям не уснуть за рулём. Система наблюдала за человеком, разговаривала с ним, поэтому водитель, отвечая на вопросы, не засыпал.

 

Другая разработка касалась безопасности в банках. Чтобы подтвердить личность клиента, консультанты обычно просили назвать его имя матери или жены.

 

Я разработал систему, которая позволяла банку собирать больше информации о клиенте, чтобы сотрудники каждый раз могли задать новый вопрос. Например: «Как зовут вашу собаку?» или «Когда вы вернулись из отпуска?»

 

В это же время технология идентифицировала голос звонящего и проверяла, действительно ли он принадлежит клиенту банка. Если всё было в порядке и человек давал правильный ответ на вопрос, сотрудник банка понимал, что звонит не мошенник.

 

Распознавание речи для YouTube

В 2014 году я перешёл в Google, где продолжил работать над распознаванием речи.

 

Я занялся системой Closed Caption для YouTube, которая автоматически распознаёт речь на видео и переводит её в субтитры. В то время технология работала плохо, и мы с командой должны были улучшить её алгоритм.

 

Для создания акустических моделей слов (математических функций, основанных на фонемах — элементарных единицах речи — vc.ru) нам были нужны данные: тексты и их озвученные версии, чтобы обучить машину. Причём нужно, чтобы слова произносились разными голосами.

 

Ранее для этого нанимались люди, которые слушали и расшифровывали аудио в текст. Так набирались несколько тысяч часов примеров речи, что мало для хорошей системы распознавания.

 

YouTube интересен тем, что там огромное количество видео, где звук и текст уже имеются. Многие пользователи загружают на сайт видеоролики, в которые уже сами вшили субтитры с расшифровкой. Отчасти это делалось потому, что ролики с субтитрами поиск выдавал выше.

 

У меня появилась идея использовать для обучения алгоритмов сотни тысяч часов готовых данных от пользователей. Проблема была лишь в том, что люди часто делают не только ошибки в тексте, но и просто ставят в субтитры случайный набор букв, чтобы получить высокий ранг при поиске. Нам пришлось поставить фильтры, которые отличали качественные данные от плохих.

 

В итоге мы закончили разработку в 2016 году, и Closed Caption стала намного лучше распознавать речь. То, что видят пользователи сейчас, нажимая на автоматическое создание субтитров, — результат этой работы.

 

Проекты для людей с ограниченными возможностями

В 2017 году я перебрался из офиса Нью-Йорка в калифорнийское отделение Google.

 

Уже тут за полгода вместе с командой я создал приложение Live Transcribe, которое использует ту же технологию перевода речи в текст, что и YouTube, но в виде отдельного приложения. С помощью него люди с проблемами слуха могут узнать, что им говорят.

 

Система распознаёт и дополнительные звуки, о которых также пишет пользователю: лай собаки, плач ребёнка, звук гитары, стук в дверь, смех и так далее. Эта часть аудиоинформации обрабатывается на самом телефоне, а расшифровка прямой речи работает через интернет.

 

Один из главных создателей этого приложения — Чет Гнеги. Часто сотрудники Google разрабатывают проекты для решения проблем их коллег. Гнеги видел, как я использую сервисы, где люди печатают для меня речь, которую слышат, и решил помочь.

 

Он создал первый прототип приложения. Оно помогало нам работать вместе и в итоге выросло в отдельный проект Google под названием Live Transcribe.

 

Ещё один проект, в котором я участвую, — Euphonia. Это приложение для людей с нестандартной речью: тех, у кого есть БАС (заболевание, при котором поражается центральная нервная система — vc.ru), глухих, заикающихся, людей переживших инсульт.

 

Для этого проекта нам вновь нужно множество примеров нестандартной речи. Только в этот раз их не найти даже на YouTube. Такая речь очень индивидуальна, и здесь нужен другой подход для сбора данных.

 

Я сам надиктовал первые 25 часов записи. Я заранее писал доклады, с которыми планировал выступать, а потом записывал их в аудио. Так я тренировал систему. Я мог выступать, а зрители видели текстовую расшифровку моих докладов.

 

С каждым новым выступлением система всё лучше меня понимала и распознавала даже новые фразы. Сейчас мне уже не нужно писать доклады заранее — алгоритм переводит в текст абсолютно всё, что я говорю.

 

Так стало понятно, что этот подход работает, и мы начали приглашать людей с особенной речью тоже читать и записывать текст.

 

В случае с людьми с БАС мы начали работу с того, что дали им типичные фразы, которые они говорят, чтобы взаимодействовать, например, с Google Home. Им нужно повторить 100 фраз, чтобы натренировать систему под себя. Таким людям трудно разговаривать, и они быстро устают, поэтому мы не можем ждать от них большого количества записей.

 

Тем не менее постепенно мы начали объединять примеры речи разных людей с этим заболеванием, чтобы в будущем создать универсальную систему. Это медленный процесс — данных слишком мало, и Euphonia — всё ещё проект-исследование, а не готовый продукт.

 

Euphonia не требует соединения с интернетом, как в случае с Live Transcribe. У смартфонов небольшие вычислительные мощности, на которых сложно заниматься расшифровкой аудио. Однако команде удалось справиться с этим.

 

Многие люди боятся, что их данные обрабатываются через интернет. Если пользователь приходит к врачу, то и он, и врач переживают, что их диалог попадёт на удалённые серверы. Тут этого нет, потому что для Euphonia не нужно подключение к сети.

 

Сейчас мы даём ссылку, где люди с особенностями речи могут зарегистрироваться и оставить примеры своей речи. В некоторых случаях Google старается делать для них бесплатно индивидуальный распознаватель речи.

 

Также я работаю над проектом по распознаванию языка жестов. Здесь мы работаем с визуальной информацией. Эта задача ещё труднее, чем распознавание речи. Сейчас разработка находится на начальном этапе.

 

В языке жестов один жест может означать не отдельную букву, а целую фразу. И нам вновь нужно найти огромное количество примеров. По этому проекту мы сотрудничаем с Галлодетским университетом. В США это единственное высшее учебное заведение для слабослышащих и глухих.

 

Кроме этого я вернулся к идее своего прибора, который переводил высокие частоты в низкие. Мои коллеги работают над его новой версией, более современной, с помощью которой получится передавать больше информации.

 

Прототип прибора перевода высоких частот в низкие

Каждый год в Google проводится конкурс, где можно предложить идею, как помочь людям с ограниченными возможностями. Примерно один месяц в году сотрудники могут работать над этим проектом.

 

Потом они показывают идею, и Google отбирает лучшие. Например, четыре года назад выиграл проект, который помогал людям с трясущимися руками держать ложку, чтобы есть.

 

 

Источник: Vc.ru

0
Tags :

Leave a Reply

Your email address will not be published. Required fields are marked *

No More Posts
Контакты диспетчерских служб инватакси

г.Астана +7 (7172) 48-19-16, пр.Аблайхана 43/1

г.Алматы +7 (7273) 46-62-22, ул.Валиханова 115

г.Атырау +7 (7122) 36-68-42

г.Актобе +7 (7132) 77-65-65 ул.Маресьева 4, «3»

г.Актау +7 (7213) 42-94-51

г.Жезказган +7 (7102) 77-30-80

г,Караганда  +7(7212) 33 07 54+7(7212) 56 54 86 , +7(7212) 51 78 18

г.Кокшетау +7 (7162) 76-16-00, ул.Пушкина 11 «А»

г.Костанай +7 (7142) 50-33-49, ул.Павлова 65

г.Кызылорда +7 (7242) 27-81-49

г.Петропавловск + 7 (7152) 39-76-87, +7( 7132) 46-11-50

г.Семей +7 (7222) 77-42-89

г.Талдыкорган + 7 (7282) 24-34-63

г.Тараз +7 (7262) 43-57-69

г.Туркестан + 7 (725 33) 7-25-41

г.Темиртау + 7(7213) 91-45-42, +7(7213 )91-45-43

г.Усть-Каменогорск +7 (7232) 61-26-40, Сатпаева проспект 36
КШТ микрорайон

г.Уральск +7 (7112) 50-05-06

г.Шымкент +7 (7252) 43-36-77, +7(7252) 43-32-30, +7(7252) 28-38-98 (социальное такси)

г.Экибастуз +7 (7187) 22 12 89, +7(7178)75-47-85

×